24,034 research outputs found

    Propagation of a Dark Soliton in a Disordered Bose-Einstein Condensate

    Full text link
    We consider the propagation of a dark soliton in a quasi 1D Bose-Einstein condensate in presence of a random potential. This configuration involves nonlinear effects and disorder, and we argue that, contrarily to the study of stationary transmission coefficients through a nonlinear disordered slab, it is a well defined problem. It is found that a dark soliton decays algebraically, over a characteristic length which is independent of its initial velocity, and much larger than both the healing length and the 1D scattering length of the system. We also determine the characteristic decay time.Comment: 4 pages, 2 figure

    Dark soliton past a finite-size obstacle

    Full text link
    We consider the collision of a dark soliton with an obstacle in a quasi-one-dimensional Bose condensate. We show that in many respects the soliton behaves as an effective classical particle of mass twice the mass of a bare particle, evolving in an effective potential which is a convolution of the actual potential describing the obstacle. Radiative effects beyond this approximation are also taken into account. The emitted waves are shown to form two counterpropagating wave packets, both moving at the speed of sound. We determine, at leading order, the total amount of radiation emitted during the collision and compute the acceleration of the soliton due to the collisional process. It is found that the radiative process is quenched when the velocity of the soliton reaches the velocity of sound in the system

    Solar prominence modelling and plasma diagnostics at ALMA wavelengths

    Get PDF
    Our aim is to test potential solar prominence plasma diagnostics as obtained with the new solar capability of the Atacama Large Millimeter / submillimeter Array (ALMA). We investigate the thermal and plasma diagnostic potential of ALMA for solar prominences through the computation of brightness temperatures at ALMA wavelengths. The brightness temperature, for a chosen line of sight, is calculated using densities of hydrogen and helium obtained from a radiative transfer code under non local thermodynamic equilibrium (NLTE) conditions, as well as the input internal parameters of the prominence model in consideration. Two distinct sets of prominence models were used: isothermal-isobaric fine-structure threads, and large-scale structures with radially increasing temperature distributions representing the prominence-to-corona transition region. We compute brightness temperatures over the range of wavelengths in which ALMA is capable of observing (0.32 - 9.6mm), however we particularly focus on the bands available to solar observers in ALMA cycles 4 and 5, namely 2.6 - 3.6mm (Band 3) and 1.1 - 1.4mm (Band 6). We show how the computed brightness temperatures and optical thicknesses in our models vary with the plasma parameters (temperature and pressure) and the wavelength of observation. We then study how ALMA observables such as the ratio of brightness temperatures at two frequencies can be used to estimate the optical thickness and the emission measure for isothermal and non-isothermal prominences. From this study we conclude that, for both sets of models, ALMA presents a strong thermal diagnostic capability, provided that the interpretation of observations is supported by the use of non-LTE simulation results.Comment: Submitted to Solar Physic

    The Space of Solutions of Coupled XORSAT Formulae

    Full text link
    The XOR-satisfiability (XORSAT) problem deals with a system of nn Boolean variables and mm clauses. Each clause is a linear Boolean equation (XOR) of a subset of the variables. A KK-clause is a clause involving KK distinct variables. In the random KK-XORSAT problem a formula is created by choosing mm KK-clauses uniformly at random from the set of all possible clauses on nn variables. The set of solutions of a random formula exhibits various geometrical transitions as the ratio mn\frac{m}{n} varies. We consider a {\em coupled} KK-XORSAT ensemble, consisting of a chain of random XORSAT models that are spatially coupled across a finite window along the chain direction. We observe that the threshold saturation phenomenon takes place for this ensemble and we characterize various properties of the space of solutions of such coupled formulae.Comment: Submitted to ISIT 201

    Finite Size Scaling of the Spin Stiffness of the Antiferromagnetic S=1/2 XXZ chain

    Full text link
    We study the finite size scaling of the spin stiffness for the one-dimensional s=1/2 quantum antiferromagnet as a function of the anisotropy parameter Delta.Previous Bethe ansatz results allow a determination of the stiffness in the thermodynamic limit. The Bethe ansatz equations for finite systems are solvable even in the presence of twisted boundary conditions, a fact we exploit to determine the stiffness exactly for finite systems allowing for a complete determination of the finite size corrections. Relating the stiffness to thermodynamic quantities we calculate the temperature dependence of the susceptibility and its finite size corrections at T=0. A Luttinger liquid approach is used to study the finite size corrections using renormalization group techniques and the results are compared to the numerically exact results obtained using the Bethe ansatz equations. Both irrelevant and marginally irrelevant cases are considered

    Bayesian learning of noisy Markov decision processes

    Full text link
    We consider the inverse reinforcement learning problem, that is, the problem of learning from, and then predicting or mimicking a controller based on state/action data. We propose a statistical model for such data, derived from the structure of a Markov decision process. Adopting a Bayesian approach to inference, we show how latent variables of the model can be estimated, and how predictions about actions can be made, in a unified framework. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from the posterior distribution. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller
    • …
    corecore